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Summary 

The last few decades have seen a massive rise 

in the amount of biomedical data, which has 

pushed the use of various Machine Learning 

(ML) approaches to solve new issues in clinical 

research and biological science. Artificial 

intelligence (AI) is revolutionizing bioinformatics 

by enabling the rapid analysis of complex and 

enormous biological data, the identification of 

hidden patterns, and the development of 

prediction models for numerous biological 

databases. ML and Deep Learning (DL) 

techniques make it possible to automatically 

extract features, choose which ones to utilize, 

and create predictive models, which makes it 

possible to research complicated biological 

systems effectively. This study intends to 

present an overview of DL so that 

bioinformaticians using these models can 

evaluate all relevant technical and ethical 

issues. The findings from this study will 

encourage people to use DL techniques to 

resolve their research questions while taking    

accountability, explainability, fairness, and 

potential biases. Finally, this study examines the 

changing environment of AI-driven tools and  

 

algorithms, emphasizing their critical role in 

accelerating research, improving data 

interpretation, and catalyzing discoveries in 

biomedical sciences. 
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Artificial Intelligence in Bioinformatics 

Background and Context 

Bioinformatics is a multidisciplinary field that 

applies computational and analytical tools to 

acquire, process, and interpret biological data 

[1].This enables researchers to extract 

meaningful insights from complex biological 

information [1]. 

Rapid advancements in genomics, proteomics, 

and systems biology have led to an 

unprecedented influx of biological data 

generated through high-throughput sequencing, 

structural biology techniques, and 

computational methods. Among these 
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advancements, breakthroughs in DNA 

sequencing technology have significantly 

enhanced the ability to decode genetic 

information, including both genomes and 

transcriptomes, in a cost-effective and time-

efficient manner [2]. This progress has allowed 

scientists to investigate genetic landscapes 

beyond traditional model organisms, 

broadening the scope of biological research. 

One of the primary applications of bioinformatics 

is genome analysis, which facilitates gene 

identification, functional annotation, and 

comparative genomic studies. Transcriptome 

sequencing plays a crucial role in genome 

editing by providing insights into gene 

expression, and genome sequence analysis 

enables precise genetic modifications [2]. 

Functional gene annotation helps identify key 

genetic elements and their roles, ultimately 

improving the accuracy and efficiency of 

genome-editing techniques [2]. Together, these 

tools advance personalized medicine, 

evolutionary studies, and drug discovery 

research. 

Beyond its genomics and genome editing 

applications, it has become increasingly 

important in clinical decision-making and patient 

care. Clinical trials have indicated that 

pharmacist-led interventions, integrated with 

bioinformatics dashboards, have significantly 

reduced emergency department visits and 

hospitalizations while improving immune 

suppression monitoring [3,4]. These findings 

emphasize the value of bioinformatics-driven 

tools for optimizing healthcare strategies, 

enhancing treatment management, and 

improving patient outcomes. In addition to its 

clinical applications, bioinformatics is essential 

in proteomics, facilitating the analysis of protein 

expression, interactions, and functions in 

disease research and biomarker discovery. 

Advances in MS-based quantitative proteomics 

and computational predictions have identified 

functional peptides within proteins [5]. This 

approach has also supported in-silico 

proteolysis strategies, offering a promising 

method for enhancing the functional properties 

of protein hydrolysates [3][4]Bioinformatics also 

leverages systems biology and network-based 

approaches to unravel complex genes, proteins, 

and pathway interactions in chronic diseases, 

aiding the identification of key therapeutic 

targets. Additionally, it accelerates drug 

discovery by identifying promising treatment 

candidates, advancing personalized and 

effective medical interventions [4].These wide-

ranging applications underscore bioinformatics’ 

However, these datasets' sheer scale and 

complexity necessitate sophisticated 

computational approaches to ensure efficient 

processing, comprehensive analysis, and 

accurate interpretation. 

Importance of Artificial Intelligence in 

Bioinformatics 

Artificial Intelligence (AI) has revolutionized 

various fields, including bioinformatics, by 

bridging biological research with computational 

analysis. This integration enhances the ability to 

uncover hidden patterns and extract valuable 

insights from complex datasets more accurately 

and efficiently. Bioinformatics enables more 

effective data analysis, interpretation, and 

knowledge discovery by utilizing advanced AI-

driven tools such as Machine Learning ML and 

Deep Learning (DL). 

AI surpasses traditional computational methods 

by employing adaptive algorithms that can 

dynamically process and analyze vast amounts 

of biological data. Unlike conventional 

approaches that rely on predefined rules and 

linear processing, AI continuously learns, 

identifies patterns, and refines its accuracy 

without explicit programming [4]. Automating 

data-driven decision-making and pattern 

recognition has significantly accelerated 

bioinformatics research, improving both speed 

and precision in scientific discoveries. 

Scope and Objectives of the Review 

This review comprehensively analyzes the 

evolving role and influence of AI in 

bioinformatics. It examines how various AI 
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techniques, particularly ML, DL, and natural 

language processing (NLP), are leveraged to 

tackle complex biological challenges. 

Additionally, it highlights current trends, key 

methodologies, and emerging AI applications 

across multiple bioinformatics domains, 

including genomics, proteomics, and systems 

biology, focusing on areas such as genome 

analysis, protein structure prediction, and 

network modeling. 

Beyond exploring applications, this review 

identifies challenges and limitations associated 

with AI in bioinformatics, such as data quality 

concerns, model interpretability, reproducibility 

issues, and integration with experimental 

approaches. It also delves into emerging trends 

and future research directions, including 

advancements in explainable AI, transfer 

learning, and novel applications in personalized 

medicine and synthetic biology. 

Ultimately, this review aims to serve as a 

valuable resource for researchers, 

bioinformaticians, and AI practitioners, offering 

insights into how AI is reshaping bioinformatics 

and driving progress in biological research and 

healthcare. 

Current Trends in AI for Bioinformatics 

Machine Learning in Bioinformatics 

ML has transformed bioinformatics, which 

provides new tools and approaches to address 

intricate biological issues. Genomic sequences, 

protein structures, gene expressions, and 

clinical records are examples of the large, 

varied, and multifaceted data frequently found in 

bioinformatics. ML techniques have proven 

indispensable in analyzing and extracting 

significant patterns from these massive 

datasets. ML is used in bioinformatics for 

various purposes, from finding genetic 

variations linked to diseases to forecasting 

protein shapes and functions. Researchers can 

create more precise models for drug 

development, disease diagnostics, and 

biomarker discovery using supervised (for 

classification and regression task such as 

disease diagnosis and prognosis), 

unsupervised (for uncovering hidden patterns 

and patient subtypes), and reinforcement 

learning methods (for optimizing drug design 

and clinical trial strategies) is shown in Figure 

1[5]. ML has played a pivotal role in advancing 

bioinformatics by developing sophisticated 

algorithms capable of handling large-scale 

biological data. Unlike conventional techniques 

such as molecular docking and sequence 

alignment—which are often labor-intensive and 

computationally expensive—ML-based 

approaches offer more efficient and scalable 

solutions. However, more precise classifications 

and predictions are made possible by the ability 

to train ML models to recognise patterns in data. 

DL, a type of machine learning, has shown 

remarkable results in proteomics and genomics. 

Deep neural networks (DNN), for example, had 

previously been assumed to be incapable of 

accurately predicting proteins' secondary and 

tertiary structures. Similarly, ML algorithms may 

examine transcriptome data to provide 

information about the control of gene expression 

and how it relates to different diseases, thereby 

supporting the developing field of personalised 

medicine. Additionally, ML is becoming 

increasingly important in developing and 

discovering new drugs. ML approaches speed 

up the possible identification of medication 

candidates, whereas the traditional drug 

development procedure is expensive and time-

consuming. ML models can anticipate a 

compound's biological activity by analysing 

chemical databases, simplifying the early drug 

creation phases. Furthermore, ML is essential to 

precision medicine because it makes it possible 

to create algorithms that, using a patient's 

genetic composition, can forecast how they will 

react to treatment. Combining these 

technologies makes it feasible to adopt more 

individualised therapy strategies, increasing 

treatment effectiveness while reducing adverse 

effects [6]. ML encompasses a broad range of 

techniques that enable computers to learn 

patterns from data and make informed decisions 

or predictions. In bioinformatics, ML is 
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increasingly used to analyze complex and high-

dimensional biological data. Depending on the 

nature of the data and the specific task, 

following learning paradigms can be applied: 

(a) Supervised Learning 

These algorithms use labeled training data to 

learn a function that maps input data to desired 

output labels. Examples include decision trees, 

support vector machines (SVMs), and linear 

regression.[6]. 

(b) Unsupervised Learning 

These algorithms do not use labeled training 

data and instead try to identify patterns and 

relationships in the data. Examples include 

clustering algorithms (e.g., k-means), 

dimensionality reduction algorithms (e.g., 

principal component analysis), and anomaly 

detection algorithms.[6]. 

(c) Reinforcement Learning 

These algorithms involve an agent learning to 

interact with its environment to maximize 

reward. These algorithms are used in 

bioinformatics for protein folding and drug 

design tasks, as described in Figure 1[5]. 

(d) Semi-supervised learning 

This involves training a ML model on a partially 

labeled dataset to use the labeled examples to 

make predictions about the unlabeled 

samples.[5]. 

 

Deep Learning (DL) in Bioinformatics 

DL has emerged as a transformative approach 

in the field of bioinformatics, offering powerful 

tools to analyze and interpret complex biological 

data [1]. By learning from vast amounts of 

genomic, proteomic, and clinical data, ML 

algorithms can assist in tasks such as disease 

classification, biomarker identification, drug 

discovery, and personalized medicine. Its ability 

to adapt and improve from new data makes ML 

particularly valuable in handling the dynamic 

and high- 

 

Figure 1: Overview of Artificial Intelligence and 

ML Paradigms: This figure illustrates the 

hierarchical relationship between AI, ML, and its 

three primary branches—Supervised Learning, 

Unsupervised Learning, and Reinforcement 

Learning. It highlights key algorithms and techniques 

within each branch, including DL models (CNN, GAN, 

RNN, ANN, Autoencoder, Transformer), standard 

supervised learning algorithms (e.g., logistic 

regression, decision trees, SVM, neural networks), 

unsupervised learning methods (e.g., PCA, K-

means, clustering), and reinforcement learning 

strategies (e.g., Q-learning, DDPG, SARSA, DQNs). 

 

dimensional nature of biological datasets. 

Traditional ML techniques often require manual 

feature engineering, which can be time-

consuming and challenging. In contrast, DL 

models are capable of automatically learning 

high-level features directly from raw data, 

reducing the need for extensive human 

intervention. [7]. When a problem can be 

effectively addressed through a well-defined 

mathematical model, the application of ML is 

typically redundant. Nevertheless, biology 

involves a complicated interaction of multiple 
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factors that mathematical formulas cannot 

entirely express. Therefore, it makes sense to 

use machine learning, especially DL. Traditional 

ML techniques, particularly in gene expression 

research, often rely on manual feature 

curation—requiring domain experts to identify, 

select, and engineer relevant features from raw 

data. This process can be both time-consuming 

and prone to bias, as it depends heavily on prior 

biological knowledge and assumptions about 

which features are most informative for a given 

predictive task [8]. This is somewhat simple for 

gene expression, but it is more difficult to 

determine if an RNA sequence is a pre-

microRNA. It is necessary to manually select 

thousands of attributes and determine whether 

each is pertinent [9]. Under such circumstances, 

DL is particularly relevant to bioinformatics since 

it can directly learn higher-level features from 

the data [10]. These algorithms leverage DNN to 

learn complex patterns and relationships within 

data. Alternatively, for a more formal or 

academic tone: By employing DNN, these 

algorithms are capable of capturing intricate 

patterns and dependencies in biological data. 

This capability has enabled significant 

advancements in various bioinformatics 

applications such as drug discovery, protein 

structure prediction, and the analysis of gene 

expression profiles 

(a) Deep Neural Networks  

At the core of DL’s success in bioinformatics are 

DNNs, which enable the modeling of complex 

biological processes through multiple layers of 

interconnected neurons[11]. Several studies 

have employed more straightforward methods, 

such as forecasting protein secondary 

structures or torsion angles; however, fully 

predicting protein conformations in three-

dimensional space remains a challenging and 

complex task. For instance, stacked 

autoencoders (SAEs) have been used to 

address prediction problems related to 

accessible surface area, torsion angles, and 

secondary structures within protein amino acid 

sequences [12]In a different investigation, 

Spencer et al. used Deep Belief Networks 

(DBN) in conjunction with Position Specific 

Scoring Matrix (PSSM) and Atchley factors to 

predict protein secondary structure [11]. DNNs 

have proven highly effective in deciphering the 

intricate mechanisms underlying gene 

expression regulation, offering insights beyond 

the reach of conventional computational 

approaches. For example, Lee et al. proposed a 

novel training method for DBNs called boosted 

contrastive divergence, specifically designed to 

handle imbalanced data, along with a new 

regularization term to promote sparsity in DNA 

sequence representations. They applied this 

approach to splice junction prediction—a critical 

area in gene expression research—and 

demonstrated significantly enhanced 

performance, including the ability to detect 

subtle non-canonical splicing signals [7]. 

Furthermore, Chen et al. used multi-

layer perceptron (MLP) to estimate the 

expression of up to 21,000 target genes from 

just 1000 landmark genes using microarray and 

RNA-seq expression data [13].The skip-gram 

model, a popular natural language processing 

technique that is a variation of MLP, was used to 

classify proteins. It demonstrated that it could 

efficiently learn a distributed representation of 

biological sequences that applies to a wide 

range of omics applications, including the 

classification of protein families. Fakoor et al. 

utilized stacked autoencoders (SAEs) to classify 

various types of cancer, including acute myeloid 

leukemia, breast cancer, and ovarian cancer. To 

enhance classification performance and 

manage high-dimensional microarray gene 

expression data, they also applied principal 

component analysis (PCA) for dimensionality 

reduction in anomaly detection tasks [14]. 

(b) Convolutional Neural Network (CNNs) 

Although only a limited number of studies have 

employed convolutional neural networks 

(CNNs) to address biological sequence 

problems—particularly in the context of gene 

expression regulation—these works have 

highlighted the strong potential of CNNs in this 
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domain. One key advantage is that position-

specific scoring matrices (PSSMs) are learned 

directly from data, rather than manually defined. 

The initial convolutional layers act as motif 

detectors by effectively capturing local 

sequence patterns. As the network depth 

increases, CNNs can learn progressively more 

complex patterns, enabling them to recognize 

longer motifs, integrate the combined effects of 

multiple motifs, and ultimately decode intricate 

gene regulatory mechanisms. 

CNNs are also well-suited for multitask 

cooperative learning, allowing them to 

simultaneously learn shared representations 

across related tasks, thereby improving overall 

performance and generalization. CNNs are 

trained to predict closely related elements 

simultaneously, making learning and 

transferring features with predictive strengths 

easier across tasks. An early approach, for 

example, transformed ChIP-seq data into a two-

dimensional matrix and applied a two-

dimensional CNN—similar to those used in 

image processing—where each row 

represented the transcription factor activity 

profile of a gene. More research has been 

concentrated on employing one-dimensional 

CNNs directly with biological sequence data. 

CNN-based methods for transcription factor 

binding site prediction and 164cell-specific DNA 

accessibility multitask prediction were proposed 

by Alipanahi et al; both groups demonstrated 

subsequent uses for detecting genetic variants 

linked to illness.[15]. Additionally, a thorough 

investigation of CNN designs for transcription 

factor binding site prediction was conducted by 

Zeng et al. (2016) [16], who demonstrated that 

the number of convolutional filters is more 

significant for motif-based tasks than the 

number of layers. In 2015, Zhou et al. developed 

DeepSEA, a CNN-based framework designed to 

prioritize expression quantitative trait loci 

(eQTLs) and disease-associated genetic 

variants by leveraging predictive modeling. The 

framework performs multitask joint learning 

across various chromatin features, including 

transcription factor binding, DNase I 

hypersensitivity, and histone mark profiles [17]. 

(c) Recurrent Neural Network (RNNs) 

Given the variable lengths and sequential nature 

of biological data, recurrent neural networks 

(RNNs) are considered a highly suitable DL 

architecture for such tasks. RNNs have been 

widely applied in research areas including 

protein classification, gene expression 

regulation, and protein structure prediction. In 

early studies, Bidirectional Recurrent Neural 

Networks (BRNNs) with perceptron-based 

hidden units were used to predict protein 

secondary structure. Building on this foundation, 

Sønderby et al. later employed BRNNs with 

Long Short-Term Memory (LSTM) units—

alongside a one-dimensional convolutional 

layer—to effectively learn representations from 

amino acid sequences and classify protein 

subcellular localization, following the growing 

recognition of LSTM's superior performance in 

capturing long-range dependencies [18]. 

Additionally, Lee et al demonstrated the high 

capacity of RNNs to analyse biological 

sequences by using RNNs with LSTM hidden 

units in microRNA identification and target 

prediction, resulting in significantly enhanced 

accuracy compared to state-of-the-art 

techniques[19]. 

(d) Emergent Architectures  

Recent advances in protein structure 

prediction—particularly in contact map 

prediction—have leveraged emerging neural 

network architectures. In a 2017 study, Min et al. 

[20] employed Deep Spatio-Temporal Neural 

Networks (DST-NNs), incorporating spatial 

features such as alignment probabilities, 

orientation probabilities, and secondary 

structure information. Additionally, Multi-

Dimensional Recurrent Neural Networks (MD-

RNNs) were utilized to capture complex 

dependencies across protein secondary 

structures, correlation profiles, and amino acid 

sequences, further enhancing predictive 

accuracy. 



                                                                      
 

Rani et al., 2025, 1, (1), 21-56; Published on: 10th August 2025 
 

 

DL Omics Biomedical imaging Biomedical signal 

processing 

Deep neural networks Protein structure, 

Gene expression 

regulation, 

Protein classification, 

Anomaly classification 

Anomaly classification, 

Segmentation, 

Recognition, Brain 

decoding 

Brain decoding, Anomaly 

classification 

Convolutional neural 

networks 

Gene expression 

regulation 

Anomaly classification, 

Segmentation, 

Recognition 

Brain decoding, Anomaly 

classification 

Recurrent neural 

networks 

Protein structure, 

Gene expression 

regulation, Protein 

classification 

 Brain decoding, Anomaly 

classification 

Emergent architectures Protein structure Segmentation Brain decoding 

Table 1: DL applied bioinformatics research avenues and input data 

 



                                                                      
 

Rani et al., 2025, 1, (1), 21-56; Published on: 10th August 2025 
 

Natural Language Processing (NLP) in 

Bioinformatics 

Natural Language Processing (NLP) is an 

interdisciplinary field that bridges artificial 

intelligence and linguistics, focusing on the 

development of computational tools capable of  

interpreting, processing, and generating large 

volumes of human language data. The 

complexity of natural language analysis arises 

from its nuanced semantics, where word order 

and contextual meaning both play critical 

roles—a single sentence can convey multiple 

interpretations depending on the surrounding 

context. Although biological sequences lack 

explicit semantic structures like those in human 

languages, this review demonstrates that NLP 

techniques can still yield meaningful insights 

when applied to biomolecular data. Our primary 

objective is to explore the application of NLP 

algorithms in bioinformatics, beginning with text 

mining in PubMed abstracts and extending to 

the analysis of nucleic acid and protein 

sequences. The approaches discussed are 

primarily based on word2vec [21]  and 

transformer-based architectures [22], which 

have shown promise in capturing patterns and 

relationships in biological data. 

(a) word2vec 

While natural language text cannot be directly 

input into neural networks without mathematical 

preprocessing, Word2Vec was developed 

based on this foundational concept. One of the 

most widely used approaches for converting 

textual data into numerical form is the creation 

of n-dimensional vectors—commonly referred to 

as word embeddings. This technique effectively 

addresses the challenge of capturing semantic 

relationships between words. A well-known 

example illustrating this principle involves the 

words king, queen, man, and woman. Ideally, in 

the embedding space, the relationship between 

king and queen mirrors that between man and 

woman. Mikolov et al. demonstrated this with 

the following vector arithmetic formula.[21]: 

vector(“King”)-

vector(“Man”) + vector(“Woman”) = vector(“Que

en”) 

"Embedding" refers to the process of converting 

data—such as words—into vector 

representations in a continuous, high-

dimensional space. The Word2Vec model is 

composed of three main components: (a) an 

input layer, (b) an output layer, and (c) a hidden 

layer, commonly referred to as the embedding 

layer. A key feature of Word2Vec is the use of 

the softmax activation function in the output 

layer, which estimates the probability distribution 

of a target word or its context. Depending on the 

research objective, Word2Vec operates using 

one of two training architectures: 

 Continuous Bag-of-Words (CBOW): Predicts a 

target word based on its surrounding context. 

 Skip-Gram: Predicts the surrounding context 

words based on a given target word, essentially 

the inverse of CBOW 

(b) Transformers 

In 2017, Vaswani et al. introduced the 

Transformer architecture as a breakthrough 

solution to several limitations faced by traditional 

models like RNNs in processing natural 

language texts [23]. Transformers overcame 

key challenges such as limited parallelization 

during training, difficulties in capturing long-

range dependencies due to memory constraints, 

and fixed input sequence lengths. This was 

achieved through the introduction of the self-

attention mechanism, which revolutionized how 

relationships between tokens in a sequence—

such as words in a sentence—are identified and 

weighted. Self-attention enables the model to 

dynamically focus on relevant parts of the input, 

significantly enhancing its ability to capture 

contextual meaning. The standard Transformer 

architecture is composed of two primary 

components: the encoder, which processes the 

input sequence, and the decoder, which 

generates the output sequence [24]. 

Input: The initial step involves vectorizing the 

input data—typically textual data—to generate 

embeddings that represent words or tokens in a 

continuous vector space. 

Positional Encoding: Since Transformers do 

not rely on recurrence or convolution to capture 
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sequence order, positional encoding is 

introduced to inject information about the 

position of tokens within a sequence. These 

positional encodings are typically created using 

sinsusoidal functions of different frequencies, 

producing unique vectors for each position. The 

positional encoding vectors are then added 

element-wise to the input embedding, 

combining with positional information. This 

enables the model to distinguish token order 

and capture the sequential nature of the data, 

which is crucial for understanding context 

Encoder: The encoder processes the sum of 

the input embeddings and their positional 

encodings. It comprises two key sub-layers: 

Multi-Head Attention (MHA): This mechanism 

allows the model to simultaneously attend to 

different positions in the sequence to capture 

contextual relationships. 

Feed-Forward Neural Network (FFN): A fully 

connected layer that applies nonlinear 

transformations to the output of the MHA  

Residual (bypass) connections are incorporated 

between layers to preserve original input 

information and improve gradient flow. Each 

sub-layer is followed by layer normalization to 

stabilize and speed up training. 

Decoder: The decoder generates output 

predictions by integrating encoder outputs with 

target sequence inputs. It includes: 

Masked Multi-Head Attention: Ensures that 

predictions for a particular position only consider 

known outputs up to that point, maintaining 

autoregressive properties. 

Encoder-Decoder Attention (MHA): Allows 

the decoder to focus on relevant parts of the 

encoder’s output. 

Feed-Forward Network and Residual 

Connections: Similar to the encoder, the 

decoder uses FFNs and residual connections, 

followed by layer normalization. 

Final Prediction: The decoder's output 

undergoes a linear transformation before being 

passed through a softmax layer. The softmax 

function produces a probability distribution over 

the output vocabulary, with each value indicating 

the model’s confidence in predicting the 

corresponding token [25]. 

Restructuring of Core ML Techniques – 

Applications in Bioinformatics Subfields  

On establishing foundational ML methodologies, 

their transformative role in key bioinformatics 

domains is now explored. Our interpretation of 

biological data, from genomics to structural 

biology, is now being reshaped by AI-driven 

approaches, thus enabling insights at 

unprecedented scale and precision as depicted 

in Figure 2. 

Role Of AI In Genomics and Epigenomics 

Genomics is a multidisciplinary field dedicated 

to understanding the structure, function, and 

evolution of genomes by applying advanced 

sequencing technologies and bioinformatics 

tools [30]. By exploring the entirety of an 

organism's genetic material, genomics seeks to 

uncover the intricate relationships between 

genome organization, gene function, and 

evolutionary processes [31]. The field is broadly 

divided into several specialized areas, including 

structural genomics, which focuses on the 

organization and physical structure of the 

genome, and functional genomics, which 

investigates the roles and regulatory 

mechanisms of genes and non-coding regions. 
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Figure 2. Integrated Multi-Omics and DL Framework: 

Comprehensive framework illustrating the integration of 
genomics, epigenomics, and gene expression analysis 
with advanced DL and artificial in (AI/ML) models-including 
ANN, GAN, CNN, RNN, autoencoders, and transformers—
for downstream applications in proteomics, structural 
biology, and systems biology. The diagram highlights how 
these computational approaches enable protein structure 
prediction, network inference, protein-ligand interaction 
studies, and dynamic modeling for holistic biological and 
biomedical research. 

Advances in next-generation sequencing (NGS) 

are used by researchers to sequence DNA/RNA 

with high accuracy and detect genetic 

variants/mutations [32]. Eepigenomics is the 

study of mechanisms associated with changes 

in gene expression without changing the DNA 

sequence, influenced by factors such as 

environmental conditions, lifestyle, and disease 

state. In this process, a complex interaction 

occurs between genotypes of an individual and 

the surrounding environment, which plays a 

pivotal role in disease development [29]. The 

modifications involved in this are DNA 

methylation, histone modifications, and small 

non-coding RNAs, which are major factors 

responsible for the activation or repression of 

genes [34]. Epigenetic biomarkers—particularly 

DNA methylation patterns—hold significant 

promise in clinical research and practice due to 

their potential roles in early disease detection, 

diagnostic precision, and therapeutic 

monitoring. Their stability and detectability in 

biological samples, even at early stages of 

disease, make them especially valuable in 

clinical applications. Recent advancements in 

single-cell epigenomics, combined with AI-

driven omics technologies, are further 

accelerating the integration of genomic and 

epigenomic markers into personalized 

medicine. 

Genome assembly 

Genome assembly is a fundamental process in 

genomics that involves aligning and merging 

short DNA sequence reads to reconstruct the 

original, continuous genomic sequence of an 

organism. It serves as a critical foundation for 

downstream genomic analyses, enabling the 

study of gene structure, function, and 

evolutionary relationships [35] [36]. Next-

Generation Sequencing (NGS) techniques have 

revolutionized genomic research through their 

high-throughput capability, allowing millions of 

sequencing reactions to occur simultaneously. 

The present NGS platforms used are Illumina 

[37], Ion Torrent, and sequencing by 

Oligonucleotide Ligation and Detection 

(SOLiD)[38]. These technologies offer distinct 

strategies, with specific advantages and 

disadvantages. Most of the NGS platforms 

generate short read lengths of less than 300 

base pairs, which complicates de novo genome 

assembly, making resolving repetitive regions 

and achieving contiguous sequences difficult 

[39]. These platforms also face challenges in 

accurately sequencing regions with extremely 

high G+C content, as well as tandem and 

interspersed repeat sequences. These 

sequencing platforms often encounter 

difficulties in accurately reading regions with 

extremely high G+C content, as well as tandem 

and interspersed repeat sequences, which can 
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result in such regions being underrepresented 

or entirely missing from sequencing datasets. 

Fragmentation and incomplete assemblies are 

additional common challenges associated with 

these technologies. To address these 

limitations, genome assembly strategies 

increasingly employ hybrid approaches that 

combine short-read NGS data with long-read 

sequencing technologies, such as PacBio or 

Oxford Nanopore. These integrated methods 

enhance assembly accuracy and completeness 

by leveraging the strengths of each platform. As 

NGS technologies continue to advance, the 

primary challenge has shifted from data 

generation to the efficient analysis, integration, 

and assembly of vast genomic datasets. [40] 

A variety of AI-powered tools are being 

leveraged to enhance genome assembly and 

analysis. For instance, Seq2Squiggle utilizes a 

Feed-Forward Transformer (FFT) architecture 

to simulate nanopore sequencing signals 

directly from nucleotide sequences[41]. Unlike 

autoregressive models, this approach 

processes inputs in parallel, resulting in faster 

and more stable signal prediction. It employs 

multi-head attention and dense layers to 

effectively extract sequence features for precise 

signal mapping. A length regulator dynamically 

expands DNA embeddings to align with the 

expected duration of nanopore signals, using a 

gamma distribution model to adjust event 

lengths. Additionally, a noise sampler introduces 

Gaussian noise to mimic the natural variability 

observed in real sequencing data. By 

addressing the limitations of traditional 

simulators—such as k-mer–based methods that 

struggle to adapt to evolving nanopore 

chemistries—this tool offers improved flexibility 

and accuracy. It shows strong potential for 

optimizing benchmarks on Nanopore R10.4 and 

R9.4.1 flow cell technologies, making it highly 

relevant to current research needs.  [41]. It uses 

a Feed Forward Transformer (FFT) to generate 

realistic nanopore sequencing signals from DNA 

sequences. 

Another DL-based diploid consensus tool, 

CONNET, has been developed to enhance both 

the efficiency and accuracy of genome 

assembly from long-read sequencing data. This 

tool addresses the high error rates commonly 

associated with long reads by leveraging spatial 

relationships within the alignment pile-up to 

improve consensus accuracy. A sliding window 

of size three is employed for improved tensor 

feature extraction. CONNET utilizes a BRNN 

with one fewer layer than Medaka yet achieves 

superior accuracy. The input tensor effectively 

captures alignment features, enabling more 

efficient neural network learning. CONNET was 

evaluated on multiple datasets, including E. coli 

SCS110 (90 datasets) sequenced with R9.4.1 

chemistry, E. coli K-12 (174 datasets) with R9 

chemistry, and Homo sapiens (37 datasets) also 

with R9.4.1 chemistry, producing high-quality 

diploid genome consensus results. 

Another notable tool, SPAdes (St. Petersburg 

genome Assembler), was originally developed 

for de novo assembly of genome sequencing 

data from cultivated microbial isolates and 

single-cell genomics DNA sequencing [42]. It 

was enhanced through hybrid assembly 

approaches that combine short reads 

(IonTorrent) with long reads (Oxford Nanopore). 

This tool supports five distinct pipelines tailored 

for genome assembly, metagenomics, 

transcriptomics, plasmid reconstruction, and 

biosynthetic gene cluster analysis from both 

metagenomic and whole-genome datasets. AI-

driven modifications to SPAdes have further 

improved metagenomic assembly and 

classification by boosting computational 

efficiency and increasing assembly accuracy 

[42]. 

Variant calling 

Variant calling is the process of detecting 

genetic variations, including single-nucleotide 

variants (SNVs) and short insertions or deletions 

(indels), from sequencing data. Over the years, 

this field has seen substantial advancements, 

with next-generation sequencing (NGS) 

technologies and advanced computational 

algorithms greatly enhancing both the accuracy 

and efficiency of variant detection[43]. Genetic 



                                                                      
 

Rani et al., 2025, 1, (1), 21-56; Published on: 10th August 2025 
 

variations refer to differences in DNA sequences 

that arise within a species or between different 

species. Next-generation sequencing (NGS) 

platforms, such as Illumina, represent second-

generation technologies, while third-generation 

platforms include Pacific Biosciences and 

Oxford Nanopore Technologies [44,32]. Third-

generation sequencing makes sample 

preparation easier and yields longer reads—

often several kilobases—by enabling real-time 

sequencing of individual DNA molecules without 

amplification [45]. Oxford Nanopore’s MinION 

exemplifies nanopore sequencing technology, 

which detects nucleotide sequences by 

monitoring changes in ionic current as DNA 

molecules pass through nanopores. The use of 

hairpin adapters enables sequencing of 

complementary strands, thereby enhancing 

both accuracy and efficiency [43].  

Computational methods like the MinKNOW 

platform provide high-accuracy sequencing 

reads and have been successfully applied in 

pathogen identification, such as detecting the 

Ross River virus with over 98% accuracy within 

hours. The combination of accuracy and 

portability holds great promise for advancing 

both research and clinical diagnostics. 

DeepVariant, developed by Google AI, is a 

state-of-the-art DL tool designed for highly 

accurate variant calling from NGS data. Unlike 

traditional rule-based bioinformatics tools, 

DeepVariant employs a deep convolutional 

neural network (CNN) to transform raw 

sequencing data into high-confidence genetic 

variant calls. This learning-based approach 

enables it to perform consistently across various 

sequencing platforms—including Illumina, 

PacBio, and Oxford Nanopore—accurately 

identifying single-nucleotide variants (SNVs) 

and insertions/deletions (Indels). Its platform-

agnostic design makes it highly versatile for 

applications in population genetics, cancer 

genomics, and rare disease research. 

An extension of DeepVariant, called DeepTrio, 

incorporates parental data to improve detection 

of de novo mutations in family-based 

sequencing, further showcasing the tool’s 

adaptability. Additionally, DeepVariant 

demonstrates robust performance even with 

low-coverage or noisy data, making it a powerful 

asset for high-throughput genomic studies. 

In the context of ovarian failure, AI-driven blood-

based gene variant profiling utilized Whole 

Exome Sequencing (WES) combined with 

MLmodels like Random Forest and 

unsupervised clustering. Analyzing 63,928 

genetic variants, this approach identified 116 

variants with significant allele frequency 

differences and classified ovarian failure into 

two genomic subtypes (A & B) with 97.2% 

accuracy. Similarly, bioinformatics and ML-

based studies on Premature Ovarian Failure 

(POF) employed WES alongside tools such as 

VEST and CADD, uncovering nine 

heterozygous variants in 24% of patients. Key 

genes linked to DNA repair and infertility—

including MCM8, MCM9, EIF2B3, PREPL, 

ERCC6, and HFM1—were identified, along with 

72 novel variants potentially involved in 

folliculogenesis 

[47]. Beyond reproductive health, AI has been 

leveraged to predict hypertension risk by 

applying ML models trained on genetic variants 

and gene expression data. Analysis of Whole 

Genome Sequencing (WGS) data using SVM 

and LR showed that Linear SVM achieved the 

highest predictive performance, with an AUC of 

0.777. Interestingly, incorporating gene 

expression data reduced the predictive 

accuracy, suggesting that genetic variants alone 

may provide a more reliable basis for 

hypertension risk assessment. 

AI also plays a vital role in predicting bacterial 

pathogenicity. For example, in a study on 

Listeria monocytogenes, supervised ML 

models—including SVM, Random Forest (RF), 

Neural Networks, and Gradient Boosting—were 

used to analyze virulence genes. The linear 

SVM model reached an accuracy of 89% in 

identifying virulent strains. Key genes such as 

InlK, InlJ, InlF, FAM002725, and lmo2026 were 



                                                                      
 

Rani et al., 2025, 1, (1), 21-56; Published on: 10th August 2025 
 

associated with foodborne outbreaks and the 

severity of disease [48]. 

Overall, while AI does not directly perform raw 

variant calling, it significantly enhances variant 

analysis by using ML models to interpret and 

classify genetic variants obtained from Whole 

Exome Sequencing (WES) and Whole Genome 

Sequencing (WGS). These models play a 

crucial role in disease classification, biomarker 

discovery, and risk prediction. Collectively, these 

applications highlight AI’s transformative impact 

on genomics, improving the accuracy, efficiency, 

and scalability of variant analysis and disease 

diagnostics, thereby advancing the field of 

precision medicine. By measuring the 

transcriptional output of genes, gene expression 

analysis is an essential next step that connects 

genetic diversity to subsequent molecular and 

cellular effect. By combining gene expression 

profiling and variant calling, researchers can 

uncover regulatory mechanisms, link genotype 

to phenotype, and find biomarkers associated 

with both health and disease. The next section 

examines the ways in which artificial intelligence 

has improved gene expression analysis, 

allowing for deeper comprehension of gene 

regulation in intricate biological contexts and 

more precise interpretation of transcriptomic 

data. 

Gene expression analysis 

Gene expression analysis quantifies the activity 

of thousands of genes simultaneously, providing 

insights into cellular and molecular functions 

and imparting information about disease 

mechanisms.[49]. AI-based approaches have 

significantly enhanced expression analysis by 

enhancing the accuracy of data interpretation, 

reducing technical variability, and identifying 

novel biomarkers. AI algorithms play a crucial 

role in profiling gene expression datasets 

extracted through high-throughput sequencing 

techniques, such as microarrays and RNA 

sequencing. These methods enhance 

classification, pattern recognition, and feature 

selection, enabling researchers to differentiate 

between different biological states, diseased 

and control conditions. ML techniques, such as 

supervised and unsupervised learning, are 

widely used in gene expression analysis 

studies. For the classification of gene 

expression profiles, ML algorithms are 

employed, including Gradient Boosting and 

Extreme Gradient Boosting (XGBoost), RF, and 

k-NN [50,51,52,53,54,55].Dimensionality 

reduction techniques such as PCA and t-SNE 

help  in visualization and manage high-

dimensional gene expression data[56]. 

Kernel-based methods, such as SVM, efficiently 

classify DEGs and help differentiate healthy and 

diseased datasets. Gaussian Process 

Classification (GPC) further enables the 

modelling of non-linear relationships and 

uncertainties in gene expression datasets [57]. 

DL models such as autoencoders and CNNs 

extract meaningful features from complex 

datasets in transcriptomics profiling. 

Transformer-based architectures, inspired by 

NLP, have also been adapted for analyzing 

single-cell RNA sequencing (scRNA-seq) data, 

improving rare cell-type identification and gene 

regulatory network reconstruction[58].The 

following case studies illustrate the diverse and 

impactful applications of AI-driven approaches 

in gene expression analysis. 

Case Studies on AI in gene expression 

analysis 

Cancer Subtype Identification Using Bayesian 

Neural Networks 

For efficient, individualized treatment, it is 

essential to accurately identify the subtypes of 

cancer. Uncertainty is a problem for traditional 

classifiers, particularly when subtypes are quite 

close. 

EpICC, a Bayesian neural network-based 

classifier created by Joshi et al., measures 

epistemic uncertainty in its predictions in 

addition to predict cancer subtypes. Because 

the model includes an uncertainty correction 

step, situations that are unclear can be marked 

for additional verification rather than being 
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rejected. In terms of overall classification 

accuracy, EpICC fared better than current 

techniques. But it has trouble discriminating 

apart very similar subtypes. It was proposed that 

including multi-omics data, including epigenetic 

alterations, would increase precision even more. 

The model's capacity to measure uncertainty is 

especially useful for applications using liquid 

biopsies and other non-invasive cancer 

detection techniques where accurate 

categorization is crucial [59]. 

 

Cancer Grade Prediction Using Gradient 

Boosting Trees 

 One important predictive marker for breast 

cancer is its histological grading, however 

manual grading can be arbitrary and 

unreliable.Amiri Souri et al introduced the 

Cancer Grade Model (CGM) based on GBT 

trained on microarray data from 5,031 untreated 

breast cancers spanning 33 published datasets, 

and corresponding clinical data were integrated. 

The model was trained on histological grade-1 

and grade-3 samples and then applied to grade-

2 and unknown-grade samples for prognostic 

risk classification[60]. CGM showed strong 

efficacy in prognostic risk stratification and 

cancer grade classification, facilitating more 

objective and repeatable grading. This strategy 

can help pathologists provide reliable prognostic 

evaluations, ultimately enhance patient 

management.  

 

ML-Based Classification of Neurodegenerative 

Diseases (NDDs) 

It can be difficult can be difficult to diagnose 

NDDs like Parkinson’s disease (PD) and 

Alzheimer’s disease (AD) early and accurately 

since their clinical symptoms overlap. Using 

blood-based biomarkers data from 377 

individuals, Lin CH et al used ML models to 

measure Aβ42, Aβ40, total tau, p-Tau181, and 

α-synuclein. Linear Discriminant Analysis (LDA) 

model was used to extract feature, and several 

classifiers were evaluated. RF had the best 

accuracy up to 76% in differentiating between 

NDD’s, while AD had an accuracy of 83%  

[61]. 

 

Gene Expression-Based Lung Cancer (LC) 

analysis 

Globally, LC continues to be major cause of 

cancer-related mortality. Finding therapeutics 

targets and comprehending tumor progression 

depends on identifying DEGs. High-dimensional 

RNA-seq data frequently presents challenges 

for conventional statistical techniques. This 

study analyzed RNA-seq data from LC samples 

(NCBI SRP009408) using multi algorithms 

framework. RF, Lasso, XGBoost, Gradient 

Boosting Elastic Net, and MLP, SVM, and k-NN 

were applied to identify robust DEGs.  The 

ensemble approach prioritized genes 

consistently flagged across models to reduce 

false positives. This study highlights the top five 

up-regulated genes COL11A1, TOP2A, SULF1, 

DIO2, MIR196A2) and top five downregulated 

genes are PDK4, FOSB, FLYWCH1, CYB5D2, 

MIR328[62]. 

Sepsis Classification Using ML Models 

Conventional methods that rely on nonspecific 

biomarkers and clinical ratings frequently 

impede the timely diagnosis of sepsis, a life-

threatening illness that necessitates prompt 

treatment. Using gene expression data from 

sepsis patients and controls from the GEO and 

EMBL-EBI Array databases, a study classified 

sepsis and identified DEGs using DT, RF, SVM, 

and DNN. With an accuracy of 89%, the models 

outperformed conventional statistical methods 

(72%), identifying 2,361 significant DEGs, 

including important genes like S100A8 (related 

with inflammatory response) and CD177 

(associated with neutrophil activation). The 

identified DEGs may help guide fast diagnostic 

panels or treatment targets, and our ML-driven 

method allows for earlier, more accurate sepsis 

diagnosis, potentially lowering mortality rates 

[63]. 

While gene expression analysis provides us 

knowledge about the cellular activity, 

understanding of protein dynamics is equally 

important for converting data into functional 

biology as gene expression analysis. This leads 
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us to role of AI in proteomics and structural 

biology. 

Role of AI in proteomics and structural 

biology 

Proteomics and structural biology are important 

for understanding the functional and structural 

dynamics of protein, which are the centre of 

virtually all biological processes. Proteomics 

focuses on the large-scale study of proteins, 

covering their expression, post translational 

modifications, interactions, and 

functions[64].Recent advances in MS and high-

throughput sequencing technologies have 

enabled comprehensive proteomic profiling, 

facilitating biomarker discovery, disease 

characterization, and drug target identification. 

Structural biology, in parallel, aims to elucidate 

the three-dimensional (3D) architecture of 

biomolecules, primarily utilizing techniques such 

as cryo-EM [65], [66], [67]. Understanding 

protein structure at atomic resolution is essential 

for deciphering molecular mechanisms, protein-

ligand interactions, and for rational drug design.  

Despite remarkable experimental progress, 

many challenges persist, including the high cost, 

time consuming nature, and technical limitations 

of traditional structure determination methods. 

In this context AI has emerged as a transforming 

force, enabling unprecedented insights into 

protein function, interaction networks, and 

structure-based drug discovery. The following 

sections explore how AI is revolutionizing both 

proteomics and structural biology. 

Protein Structure Prediction (PSP) 

Predicting protein structures from amino acid 

sequences has been a persistent challenge in 

bioinformatics and biochemistry. Accurate 

structure prediction is important for 

understanding protein function, guiding drug 

designing, and developing novel therapeutics. 

Traditional computational approaches such as 

homology modeling, molecular dynamics, are 

often limited by high computational costs, time 

requirements, and restricted accuracy, 

especially for proteins lacking homologous 

templates. Recent advances in AI, particularly 

DL, have dramatically improved the accuracy 

and speed of PSP. Early DL models, such as 

CNNs were used to predict contact maps 

indicating spatial proximity between amino acid 

residues. These models input features, and 

predicts spatial relationship, which are then 

converted into full 3D atomic structures using 

gradient-based optimization. Graph Neural 

Networks (GNNs) and RNNs further enhanced 

the ability to capture long-range dependencies 

in protein sequences and structure [68] 

.Attention mechanisms, especially in 

transformer architecture, have enabled the more 

effective use multiple sequence alignments 

(MSAs) and structural templates.  

Among the most promising AI-based tools is 

Alphafold2, developed by DeepMind[69]. 

Alphafold 2 utilizes transformer neural network, 

and graph-based reasoning on structural data 

from the Protein Data Bank (PDB) to predict 3-

D conformations of proteins  [70].  Although 

Alphafold 2 has attained near experimental 

accuracy for many single chain proteins, it still 

has issues with dynamic conformational states, 

multichain complexes, and inherently 

disordered regions. For novel folds or complex 

assemblies, experimental validation is 

frequently necessary. 

Another significant tool is RoseTTAFold, 

developed by the Baker’s Lab at the University 

of Washington  [71]. RoseTTAFold employs a 

three-track network model that simultaneously 

integrates sequence, distance, structure 

information, allowing for rapid and accurate 

structure prediction. It is useful substitute for 

Alphafold 2 because of its design, which permits 

effective modelling even with limited 

evolutionary information. ResNet is used to 

extract evolutionary traits[67] ,GNNs are used to 

spatial model constraints and folding 

mechanisms[68] ,and attention- based networks 

are used to predict inter-residue distances and 

orientations. 

Other emerging DL 

(https://zhanggroup.org/DeepFold/) ,trRosetta 

https://zhanggroup.org/DeepFold/
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(https://yanglab.qd.sdu.edu.cn/trRosetta/), and 

RaptorX 

(https://raptorx.uchicago.edu/StructureProperty

Pred/predict/). OmegaFold utilizes protein 

language model, and does not require MSAs. 

Making it faster and more effective on for 

divergent sequences, including those with few 

homologs [69]. DeepFold is designed for de 

novo protein structure prediction, using Spatial 

constraints, which are then assembled into full 

length models using folding algorithm [70]. 

Deepfold is de novo PSP tool that uses 

convolutional residual neural network to predict 

spatial constraints. Folding algorithms are then 

used to put the predictions together into full- 

length models. Homologous templates are 

incorporated into the network’s predictions to 

improve accuracy, Rosetta constructs protein 

structures by direct energy minimization under 

the inter-residue distance and orientation 

distributions [71], [72], [73] . RaptorX applies 

deep convolutional neural fields (DeepCNF) for 

concurrent prediction of protein structure, 

solvent accessibility, and disorder regions [74] 

While accurate prediction of protein structures 

forms the foundation for understanding protein 

function, a critical next step in biomedical 

research is to elucidate how these proteins 

interact with small molecules, or ligands. Such 

protein-ligand interactions underpin most 

biological processes and are central to drug 

discovery efforts. Building on advances in 

protein structure prediction, AI is now 

increasingly applied to predict and analyze 

protein-ligand interactions with remarkable 

accuracy. 

Protein ligand interaction prediction  

Protein-ligand interaction (PLIs) are 

fundamental to biological processes and 

therapeutics development, as they occur when 

a small molecule (ligand) binds to the target 

protein (receptor), thereby its function. The 

strength of this interaction, known as binding 

affinity, is a key determinant of how effectively a 

ligand modulates protein activity. Advanced AI 

and ML algorithms have become powerful tools 

for predicting and amazing this interaction, 

accelerating drug discovery and biomedical 

research. 

A variety of curated databases, such as 

BindingDB, PDBbind, PubChem, and ChEMBL, 

provide comprehensive data on compound- 

protein pairs and their corresponding interaction 

labels[75]. Each molecule is represented using 

feature vectors or matrices extracted from 

various biological, topological, and 

physicochemical properties, which are then 

used to train ML models [76]. DL architectures, 

including CNNs, RNNs, GNNs, and transformer-

based models, are used to capture complex 

patterns within these dataset [82].  For instance, 

CNNs and RNNs are commonly used for ligand 

binding site prediction, identifying potential 

pockets on the protein surface where ligands 

may bind, which is crucial for rational drug 

design. Notably AI-based ligand binding site 

prediction tools are P2RANK, a stand-alone 

template-free tool [78], Deepsite uses 3D CNN 

[79], GeoNetachieves introduces a coordinate-

free geometric representation to characterize 

local residue distributions and generating an 

eigenspace to depict local interactive 

biophysical environments [80]. 

AI-Driven Virtual Screening 

Virtual screening (VS) is an important 

component of PLIs, leveraging AI models to 

rapidly screen large libraries of potential drug 

molecules against target protein. This process 

help identify candidates with the highest binding 

affinity, significantly reducing both the time and 

cost associated with traditional drug 

development [81]. VS approaches typically 

classified is structure-based and ligand-based 

[82].  

Structure-based virtual screening (SBVS) 

requires detailed structural information about 

the target protein, which can be extracted from 

experimental approaches such as (NMR) and 

computational modelling [82]. AI-driven 

techniques like molecular docking predict how 

well a drug binds to its target protein, based on 

its 3D structure.  For example, DL-based 

https://yanglab.qd.sdu.edu.cn/trRosetta/),%20and%20RaptorX
https://yanglab.qd.sdu.edu.cn/trRosetta/),%20and%20RaptorX
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molecular docking tool utilizes quantitative 

structure-activity analysis (QSAR) models 

trained on actual docking scores from a small 

subset of a molecular database to predict 

docking scores of the remaining compounds 

[83], [84]. Advanced tools like DiffDock use a 

diffusion generative model to sample ligand 

poses, mapping the manifold of ligand 

confirmations relevant to degrees of freedom, 

such as translation, rotation, and torsion [85]. 

EquiBind, an SE (3)- equivariant geometric DL 

model can directly predict both the binding 

location (blind docking) and the bound pose and 

orientation [86].TankBind, incorporates 

trigonometry constraints and segments the 

protein into functional blocks to explicitly attend 

to all possible binding sites [87]. Uni-Mol utilizes 

SE (3)-Transformer architecture, with pertaining 

on extensive molecular and protein pocket 

datasets, and offers several fine-tuning 

strategies for downstream tasks [88].SBVS 

effectively determines PLIs, Key amino acids 

involved in the interaction, and target’s structural 

context. ML-based Scoring algorithms, such as 

NN-score, CS-score, SVR-score, and ID-score, 

have been developed to further improve 

prediction accuracy in SBVS.  

Ligand-based virtual screening (LBVS), in 

contrast, relies on the chemical and 

physiochemical similarities of known 

compounds to predict new active compounds, 

without requiring prior structural knowledge of 

the target protein. AI-driven LBVS models can 

efficiently identify bioactive molecule using 

supervised learning on curated datasets of 

active and inactive compounds. Algorithms such 

as GNMs and ANNs, as well as models like 

PARASHIFT, HEX, USR, and ShaPE are 

commonly employed. After identifying promising 

compound, further analysis such as ADMET 

(absorption, distribution, metabolism, excretion, 

toxicity) profiling and in vitro bioassays were 

performed, with successful advancement 

towards clinical trials.  

With the progression of AI and ML, several tools 

for VS have been developed, including 

ChemSAR[89],Gypsum-DL[90], 

PyRMD[91]VSFlow, CompScore[92]FlexX-

Scan[93],EasyVS[94], MTiOpenScreen[95], 

Deep Docking[96], RosettaVS[97], A-HIOT[98]. 

These tools have improved prediction accuracy 

and reduced false positives, streamlining the 

drug discovery pipelines. 

Despite these advances, several challenges 

remain. The quality and diversity of training data 

can limit model generalizability, and static 

predictions may fail to capture dynamic protein-

ligand interactions. High-resolution docking and 

generative modeling are computationally 

intensive, and experimental validation remains 

essential to confirm AI-driven predictions. 

AI in system biology and multi omics 

integration 

Systems biology takes a holistic approach to 

understanding biological processes by 

integrating data from various omics disciplines 

[99].In contrast to reductionist methodologies 

focusing on isolated molecular entities, systems 

biology integrates diverse data sources to 

construct comprehensive models of biological 

function and disease mechanisms[99]. Network 

Analysis is one of the primary methodologies in 

systems biology, enabling the visualization and 

interpretation of complex biological interactions. 

By representing molecular entities as nodes and 

their interactions as edges, network-based 

approaches facilitate the identification of main 

regulatory elements, disease-associated 

biomarkers, and potential therapeutic 

targets.[100].The advent of AI has significantly 

enhanced systems biology and network analysis 

by enabling efficient processing of large-scale 

omics data, identifying hidden patterns, and 

predicting dynamic biological behaviors.  

NETWORK INFERENCE 

Network Inference is widely applied across 

various biomedical subfields, such as genomics, 

metagenomics, epidemiology, and 

neuroscience [101]. Networks serve as powerful 

tools for representing complex interactions, from 

molecular markers and neuronal connections to 
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microbial communities and populations level 

dynamics [102]. In the context of GRN, network 

inference aims to reconstruct interaction maps 

for gene expression data, revealing how genes 

regulate each other. This is a pivotal tool for 

understanding complex biological processes 

and diseases like NDDs and cancer.  The goal 

is to construct a network (graph) where nodes 

represent elements (e.g., genes, proteins, 

neurons), and edges represent relationships or 

interactions between them[103].  

Various methods are available for network 

inference, including correlation-based methods, 

regression techniques, Bayesian networks, and 

information-theoretic measures. Each approach 

has its strengths and weaknesses, some excel 

at detecting direct interactions, while others 

perform better suited for capturing non-linear 

relationships or dynamic regulatory 

mechanisms. The development of diverse 

computational tools and algorithms has 

facilitated network inference. Conventional 

methods, such as Weighted Gene Co-

expression Network Analysis (WGCNA), rely on 

correlation, while Bayesian network-based 

approaches infer probabilistic relationships 

between genes [103].  Advanced algorithms, 

such as ARACNE (Algorithm for the 

Reconstruction of Accurate Cellular Networks) 

and GENIE3, utilize mutual information and 

tree-based methods to improve accuracy and 

scalability. [104]. However, newer methods such 

as Phixer and PIDC (Partial Information 

Decomposition and Context aim to reduce 

redundancy and improve directionality in 

inferred networks [105]. Many of these tools are 

tested and benchmarked using publicly 

available datasets such as those from the 

DREAM Challenges, which provide a 

standardized framework for evaluating network 

inference algorithms.  

Despite significant progress, several 

computational challenges remain in network 

inference. One major issue is the integration of 

multiple data sources, such as transcriptomics, 

epigenomics, and proteomics, to improve 

inference accuracy. Another challenge is the 

construction of pseudo-temporal orderings from 

static single-cell RNA sequencing data, which 

would enable the study of dynamic regulatory 

interactions. Additionally, combining multiple 

network inference algorithms has shown 

promise in improving prediction accuracy, but 

finding optimal strategies for integration remains 

an open question. Addressing these challenges 

will enhance the ability of network inference to 

generate biologically meaningful insights, 

particularly in applications such as drug 

discovery, cancer research, and personalized 

medicine. Pathway analysis (PA) builds on 

network-based approaches by identifying 

functional modules and signaling cascades 

within these networks, enabling researchers to 

interpret how groups of genes and proteins work 

together to drive cellular processes and disease 

mechanisms which is described in the next 

section.

 

Domai
n 

Tools Algorithm Keyfeatures Limitations Refer
ences 

 
 
 

Genome 
assembly 

 
 
 

SPAdes 

 
 

 
Hybrid 

Improved accuracy in 
single-cell and bacterial 
assemblies 

Computationally intensive 
 

[38] 

Seq2squiggle FFT signal prediction faster 
and more stably 

[106] 

 
 
 
 

 
 

Variant 
calling 

Deep Variant CNN Enhance genomic 
analysis accuracy, 
automatic feature 
extraction 

Computationally intensive and 
require a large amount of training 
data 

[107] 

GATK ML/Stats 
Robust, optimized for 
high-throughput 

Complex setup, 
resource intensive 

[108] 
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Gene 
expressio

n 
analysis 

XGBoost, RF, 
k-NN 

Classification 
feature 
selection 
 pattern 
recognition 

High accuracy 
handles high-dimensional 
data 

Sensitive to imbalance batch 
effects 

 
 

[109] 
 
 
 
 

SVM, GPC DEG 
classification 
non-linear 
modeling 

Efficient for small/medium 
datasets 

Less interpretable, kernel selection 
critical 

 
[109] 

Autoencoders, 
CNN 

Dimensionali
ty reduction, 
feature 
extraction 
 

Captures complex 
patterns 

May lack interpretability [110] 

Transformers scRNA-seq 
analysis, rare 
cell type 
identification 

Improved rare cell 
detection 

Computationally demanding [111] 

 
 
 

Protein 
structure 
prediction 

Alphafold Transformer 
and GNN, 
MSA based  

High accuracy, 
revolutionized protein 
modeling 

Limited to disordered regions, 
single conformers only 

[112] 

RoseTTA Fold Three-track 
network, 
rapid 
prediction 
(ResNet, 
GNN) 

Fast and accurate Slight less accurate for large 
complexes  

[113] 

OmegaFold Protein 
language 
model 

MSA-independent/fast, 
scalable 

Lower resolution for large/ 
divergent proteins. 
 

[114] 

 
 
 
 
 
 
Protein 
ligand 
interactio
n 
prediction 

P2RANK, 
DeepSite 

3D CNN Template-free, spatial 
accuracy 

Model interpretability, dataset bias [78] 

DeepDock, 
DiffDock 

Docking 
score 
prediction, 
diffusion 
models 

Efficient, handles pose 
flexibility 

Relies on the docking dataset 
quality 

[85] 

EquiBind, 
TankBind 

SE(3) 
equivariant, 
geometric DL 

Direct pose prediction 
considers protein 
flexibility 

Requires high-quality structures  
 

[86], 
[87] 

ChemSAR, 
Gypsum-DL 

Virtual 
screening, 
scaffold 
generation 

High throughput reduces 
false positives 
 

Training data bias, chemical space 
coverage 

[89], 
[90] 

 
 
 
 
 
Network 
Analysis 

ARACNE, 
GENIE3 

Mutual 
information, 
tree-based 
inference 

Captures nonlinearities, 
scalable 

May infer indirect associations 
 

 
[104] 

Phixer, PIDC Redundancy 
reduction, 
directionality 
improvement 
 

Improved accuracy, 
directionality 

Computational complexity [105] 

 
 
 
 
Pathway 
Analysis 

DeepGSEA Prototype-
based, 
scRNA-seq 
enrichment 

Handles heterogeneity, 
explicit visualizations 

Requires high-quality gene sets [115] 
 
 
 

PathGNN, 
PathCNN 

GNN/CNN-
based, 
pathway 
topology 
integration 
 

Enhanced prediction, 
interpretable pathways 

Needs large annotated datasets 
 

[116] 

 
Dynamic 
modeling 

dFBA, 
Cobrapy,CaSQ 

time-
dependent 
metabolic 
flux 

Simulates temporal 
behaviour 

Parameter identifiability, 
simplifications 

[117] 
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simulation, 
Boolean 
model 

Table 2: Comparative Overview of Bioinformatics Tools Across Key Application Domains  

Pathway Analysis  

Pathway analysis (PA) is an essential approach 

for the identification of significant biological 

pathways associated with a gene list retrieved 

from omics datasets[118], [119]. Traditional 

methods rely on statistical enrichment 

techniques such as over-representation and 

gene set enrichment analysis (GSEA)[119]. AI 

and ML-powered PA, has transformed 

bioinformatics by enabling the prediction, 

modelling, and understanding of complex 

biological interactions. AI-driven PA is crucial for 

elucidating disease mechanisms, identifying 

drug targets, predicting drug-drug interactions, 

and optimizing therapeutic strategies, while 

facilitating meaningful interpretation and 

hypothesis generation. 

AI-Driven Methodologies in PA 

 ML-based PA approaches include RF, which 

identifies key pathways based on ranking 

feature selection from omics data, SVM, 

enhances GSEA predictions by differentiating 

relevant vs. non-relevant pathways, and GBM, 

captures non-linear  

 

relationships in gene expression analysis.[120], 

[121], [122]. DL based PA methods, named as 

autoencoders, that reduce dimensionality and 

uncover hidden patterns in gene expression 

data, GNNs integrate pathway interaction 

networks based on complex gene interactions, 

and RNNs capture temporal dependencies in 

dynamic pathway regulations, especially in time 

series transcriptomics data. Some commentary 

techniques such as NLP analyzes biomedical 

literature to identify novel gene-pathway 

associations, continuously updating pathway 

databases with the latest findings. 

Reinforcement learning algorithms dynamically 

refine pathway selection strategies, optimizing 

enrichment scores for improved precision in 

high-throughput datasets. The following case 

studies illustrate the diverse and impactful 

applications of AI-driven approaches in PA 

 PathGNN, GNN model that leverages pathway 

topology to enhance predictive accuracy in 

cancer survival prediction. PathGNN 

outperformed traditional methods by identifying 

biologically relevant pathways linked to survival 

outcomes [123] PathCNN, adapts CNNs for 

pathway-based multi-omics data analysis using 

innovative pathway image representation. 

Applied to Glioblastoma multiforme, it predicted 

long-term survival and identified critical 

pathways linked to survival outcomes. By 

improving interpretability and incorporating 

pathway topology, it enhances the 

understanding of the underlying biological 

processes driving disease progression [116] 

DeepGSEA, improves PA-based GSEA using 

prototype-based DL for improved interpretability 

and accuracy in single-cell RNA-seq data. 

DeepGSEA captures complex gene set patterns 

and visualizes pathway distributions, aiding in 

biomarker discovery in precision medicine [115]. 

MinePath integrates GNNs, network-based 

scoring methods, and influence propagation 

models, to uncover regulatory mechanisms 

(e.g.’CXCR4 mutant gene, ErbB signaling) in 

breast cancer and cervical cancer datasets. In a 

study by Yuan et al., the unsupervised 

DeepT2Vec autoencoder generated 30-

dimensional transcriptomic feature vectors 

(TFV) from 20,000 normal/tumor 

transcriptomes, while the supervised classifier 

DeepC achieved to 90% pan-cancer and 94% 

cancer specific [124]. 

While PA identifies critical biological pathways 

and their roles in disease mechanisms, 

understanding how these pathways evolve over 

time and respond to perturbations requires 

dynamic modeling (DM). Dynamic modeling 

builds on pathway-centric insights by simulating 

temporal changes in molecular interactions, 
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metabolic fluxes, and signaling cascades. This 

shift from static pathway mapping to time-

resolved simulations enables researchers to 

predict how biological systems adapt to 

therapeutic interventions, environmental 

stresses, or genetic alterations. The following 

section explores how AI-driven dynamic 

modeling integrates pathway data, multi-omics 

inputs, and biophysical constraints to unravel 

the temporal dynamics of complex biological 

systems, bridging the gap between functional 

annotation and predictive systems biology. 

Dynamic Modeling 

A well-established tool to understand metabolic 

networks, the temporal behaviour of complex 

biological systems, such as metabolic 

pathways, gene regulatory networks, and PPIs, 

is dynamic modeling (DM) [125].  A key 

application of DM is in drug response prediction, 

in which mathematical models simulate how 

biological systems evolve in response to 

therapeutic interventions. Dynamic Flux 

Balance Analysis (dFBA) [117]  is a key tool for 

DM, extending Flux Balance Analysis by 

incorporating time-dependent constraints.  

In metabolic modeling, AI algorithms and 

bioinformatics tools enhance dFBA.  For 

example, Aghakhani et al. utilized DM to 

investigate metabolic programming of breast 

cancer-associated fibroblasts (CAFs) in the 

tumor microenvironment (TME). They 

constructed a Boolean model using CaSQ tools 

to map the regulatory framework, integrating it 

with MitoCore’s central metabolism network. 

Flux Balance Analysis (FBA) with CobraPy 

quantified metabolic fluxes. AI improved 

biological relevance through enhanced network 

inference, parameter optimization, and 

metabolic flux predictions. The study compared 

two FBA scenarios: a control representing 

baseline metabolic constraints and a CAF 

regulatory model. The primary goal was to 

maximize ATP production, focusing on 

glycolysis and oxidative phosphorylation 

(OXPHOS) as key pathways. Since MitoCore 

lacks tissue specificity, flux distributions (rather 

than absolute values). ATP production ratios 

from glycolysis and OXPHOS, alongside carbon 

uptake/secretion fluxes, revealed metabolic 

exchanges with the TME. Internal metabolic 

fluxes comparisons, showed significant 

alterations, particularly with variations 

exceeding two-fold Another study leveraged 

double-hybrid continuous approach to develop a 

multiscale bioinformatics framework integrating 

tissue, cellular, and molecular interactions within 

the TME. This method enables the dynamic 

simulation of tumor progression and therapeutic 

response by incorporating vascular networks, 

metabolic pathways, and drug diffusion models. 

By treating tumor vasculature and drug 

distribution as interconnected tissues, the model 

captures the spatiotemporal evolution of tumor 

heterogeneity. The study highlights the 

importance of network modeling in predicting 

combination therapy efficacy, optimizing 

metronomic chemotherapy, and improving drug 

penetration through vascular normalization 

strategies[127]. 

Rachel et al extended the Retarded Transient 

Function approach to model both temporal and 

dose dependent dynamics in intracellular 

signaling networks. This method provides a 

computationally efficient and interpretable 

framework for predicting of signaling differences 

across biological conditions in their response to 

stimuli. Using Inflammasome activation in bone 

marrow-derived macrophages as a case study, 

the model successfully characterized 

dependencies, dose-response kinetics, and 

signaling dynamics  [128].  

Wang et al developed a multiscale in silico 

model integrating EGFR-ERK signaling and 

cellular dynamics in Non-Small Cell Lung 

Cancer (NSCLC). The model demonstrates how 

extrinsic ligand concentrations and intrinsic 

molecular profiles influence tumor spatial 

dynamics, revealing a phase transition where a 

minimal ligand increase suppresses 

proliferation. These findings highlight the 

importance of feedback mechanisms between 
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molecular and cellular scales in shaping tumor 

behavior[129]. 

Challenges and limitations of AI in 

bioinformatics 

Data Quality and Availability 

The performance and accuracy of AI-driven 

bioinformatics applications heavily depend on 

the quality and availability of biological data. 

While high-throughput sequencing and omics 

technologies generate vast amounts of data, 

these datasets often suffer from noise, missing 

values, and inconsistencies [125]. The lack of 

standardized formats and integration across 

databases further complicates data accessibility 

and usability. Additionally, data privacy 

regulations and ethical considerations restrict 

access to patient-derived genomic and clinical 

datasets, limiting the scope of AI applications in 

precision medicine. 

AI models require diverse and representative 

datasets for robust training and generalization. 

However, biases in available datasets can lead 

to skewed predictions, reducing the reliability of 

AI-driven insights [126]. Addressing data quality 

issues through improved curation, annotation, 

and harmonization strategies is essential for 

enhancing the effectiveness of AI in 

bioinformatics. 

Reproducibility and Validation of AI Results 

Reproducibility is a critical issue in AI-driven 

bioinformatics research. AI models often rely on 

complex computational pipelines, sensitive to 

variations in dataset preprocessing, algorithm 

selection, and hyperparameter tuning [130]. 

Differences in computational environments and 

software dependencies can lead to inconsistent 

results, making it challenging to validate AI 

findings across different research groups. 

To address this challenge, researchers 

emphasize the importance of open-source tools, 

standardized benchmarking datasets, and 

transparent reporting of methodologies. 

Reproducibility initiatives, such as FAIR 

(Findable, Accessible, Interoperable, and 

Reusable) data principles and AI model 

repositories, play a crucial role in improving 

reliability and facilitating independent validation 

of AI-based bioinformatics studies [131], [132]. 

Integration with Experimental Methods 

Despite its computational capabilities, AI in 

bioinformatics must be effectively integrated 

with experimental methods to provide 

meaningful biological insights. AI models 

generate predictions that require validation 

through laboratory techniques like CRISPR 

gene editing, mass spectrometry, and high-

throughput screening [129]. The continuous 

feedback loop between AI predictions and 

experimental results is vital for refining models 

and enhancing their biological relevance. 

However, the integration of AI with experimental 

workflows poses challenges, particularly in 

fostering effective collaboration between 

computational scientists and experimental 

biologists. The lack of standardized approaches 

for validating AI-generated hypothesis highlights 

the need of strong frameworks to support AI 

driven discovery and its translation into practical 

applications. 

As the field continues to address these 

foundational challenges, attention is 

increasingly turning to the future directions and 

transformative opportunities that AI offers in 

bioinformatics research. 

Future of AI in bioinformatics 

Integration of AI in Bioinformatics 

The integration of AI into bioinformatics is 

poised to dramatically change the nature of 

biotechnology research. Recent advances in AI, 

coupled with breakthroughs in ML, robotics, and 

data analytics, display enormous potential to 

revolutionize the field in ways once thought 

unimaginable. However, these advancements, 

also raise significant ethical, labor, and security 

challenges that must be carefully addressed. 

Serving mankind ethically requires ensuring fair 

access to AI’s advantages while reducing its 

hazards. Among the emerging priorities in AI 

integration is the need for transparency and 
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interpretability, particularly as AI models 

become more complex and widely adopted in 

sensitive domains such as healthcare. 

Explainable AI (XAI) in Bioinformatics 

The "Black box" problem remains a significant 

challenge in AI-driven bioinformatics, where 

conventional AI models lack transparency, 

obscuring how input data are transformed into 

output results[133]. For example, in an ANN, 

contains multiple interconnected layers, such as 

input, hidden, and output layers, with hidden 

layers, posing interpretability challenges due to 

their complex internal structure. The intricate 

internal structure obscures the reasoning behind 

specific predictions and decisions. 

Explainable AI (XAI) has emerged as a critical 

solution to this issue. XAI techniques open the 

black box by providing insight s into how model 

operate, thereby improving both the 

predictability and trustworthiness of AI systems 

[134]. XAI works by analyzing the influence of 

each feature on the model's behavior. In 

addition to model visualization, methods such as 

saliency maps, feature importance ranking, and 

decision trees are used to clarify the model's 

decision-making process. These methods help 

researchers and clinicians understand, 

interpret, and trust model outouts by revealing 

the factors driving predictions. 

 Improving interpretability through XAI, not only 

enables the identification and reduction of 

biases but also to establish confidence in AI-

driven results. In bioinformatics, where datasets, 

are often large complex, and heterogenous 

interpretability is crucial.  Without it, the basis for 

model predictions can be lost amid the 

complexity of the data and algorithms. XAI 

provides a valuable toolkit for healthcare 

professional to validate, optimize, and deploy AI 

models more reliably in clinical and research 

settings [135], [136]. XAI technologies deployed 

in various fields, like predictive modeling, data 

interpretation, and mining valuable patterns 

from unstructured data in the biological domain. 

For example, interpretable DL methods such as 

SHapley Additive exPlanations (SHAP) and 

class activation maps (grad-CAM) have been 

proven effective for analyzing DNA, RNA, and 

protein sequences [136], [137]. Similarly, tools 

like Local Interpretable Model-agnostic 

Explanations (LIME) have become more 

popular in bioimaging, including CT and MRI 

image assessments. LIME segments images 

into interpretable "superpixels," making it 

possible to quantify and visualize region of 

interest, leading to more accurate identification 

of the disease and improved diagnostic 

results[135]. 

In summary, XAI is important to bridge the gap 

between complex AI models and practical 

trustworthy applications in bioinformatics. By 

improving transparency and interpretability, XAI 

empowers to make better informed decisions, 

ultimately improving the reliability and impact of 

AI- driven discoveries in biomedical sciences. 

Transfer Learning and Domain Adaptation 

The performance of AI models in bioinformatics, 

particularly in applications like bioimaging, 

depends heavily on the quality and consistency 

of the training data [138]. If the dataset is 

heterogeneous and unbiased, generally the 

model will provide accurate results, while a 

flawed or biased dataset can significantly 

complicate the accurate assessment of the 

model performance.  

 Transfer learning allows model trained on one 

task to be repurposed for related tasks, 

leveraging prior knowledge to improve 

performance [139], [140].This approach 

facilitates bias detection, model validation and 

efficient resource utilisation. By redefining the 

data properties to achieve domain invariance, 

domain adaptation ensures models remain 

robust across varied biological context[141]. 

These methodologies are becoming important in 

bioinformatics applications, such as clinical 

image analysis, tissue segmentation, disease 

classification, and gene expression profiling, 

where they enhance model accuracy and 

generalizability[142]. 

Federated Learning 
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As AI expands sensitive domains like 

healthcare, important ensuring data privacy and 

security becomes paramount. Federated 

learning offers a decentralized approach, 

allowing organizations to collaboratively train AI 

models without sharing raw data [143], 

[144].Only the trained model is exchanged, 

preserving confidentiality and reducing the risk 

of data breaches. 

This approach helps organisations to train AI 

models on their own datasets without the risk of 

data transfer, thereby offering increased 

security. The model that is only to be shared is 

the trained one, which means the raw data stays 

safe and confidential. This technique not only 

averts data loss incidents but also [145], [146]. 

Federated learning is especially beneficial in the 

case of large-scale, multi-center genomic 

studies. The genomic information has always 

been the most sensitive among all the biological 

information because federated learning here 

can enable the research centres to work 

together on predictive models, e.g., for disease 

risk assessment or pharmacogenomic 

responses, without the necessity of raw 

genomic data gathering, and thus, data privacy 

is preserved while the innovation is encouraged 

[145], [146]. 

Quantum Computing and Next-Generation AI 

Quantum computing represents a new era in 

computational power, that can deliver certain 

computing tasks and data storage at levels far 

higher than those of ordinary computers. In 

contrast to quantum computers, where 

information is typically represented as binary 

bits (0s and 1s), ordinary computers are 

resource-consuming to process large datasets. 

Quantum computers mainly rely on qubits, 

taking advantage of the concept of 

superposition, to exist in different states at the 

same time. This core contrast is responsible for 

the fact that quantum computers can solve 

complicated problems and handle high-

dimensional data sets very quickly and with 

good accuracy [147]. 

In bioinformatics, quantum computing can 

significantly advance several of the most 

challenging and difficult tasks in this field like 

analyzing the massive amount of biological 

data, modeling molecular interactions, and 

simulating biological systems without any 

inaccuracies. These capabilities could 

accelerate drug discovery, and genomics 

research and therapeutics development, 

drastically shortening timelines accuracy [148]. 

 

Digital Twin Technologies in Healthcare 

Digital twin technology is an emerging in-silico 

method, with significant potential in healthcare, 

with its approach to model and track patient 

health data in a live mode being the state-of-the-

art method. A digital twin is dynamic, virtual 

representation of a physical system-such as a 

patient-created by integrating data medical 

imaging, wearables sensors, genomes, and 

clinical records. This technology makes real-

time simulation and monitoring of a person's 

health status, supporting, personalized 

diagnosis and treatment [149]. 

Creating a digital twin involves several stages: 

Data Acquisition 

 Medical Imaging (e.g., MRI, CT, Ultrasound): 

Researchers used admitted patient's body 

images to create a geometrically accurate 

model establishing a new standard in the 

healthcare sector [150] 

 Wearable Sensor Data:  

 Data on physical parameters such as heart 

rate, glucose, and sleep were monitored in real-

time using body-worn devices. Bruynseels et al 

identified this is the next step in digital care[150] 

 Omics Data (Genomics, Proteomics, 

Metabolomics): 

Omics technology plays a pivotal role in 

Identifying genetic predispositions, molecular 

pathways, and biomarkers. The new era of 

computational system biology and functional 

genomics maximizes the potential of these 

discoveries[150] . 

 Clinical Records: 
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Electronic health records serve as 

comprehensive repositories of patient histories, 

diagnoses, and more, maintained by hospital. 

This CBMM approach aims to accelerate patient 

diagnosis and assist healthcare providers in 

making optimal decisions[149]. 

Model Integration 

 Computational Modelling: 

 Simulates organ and tissue behaviour using 

systems biology and agent-based modeling, 

providing detailed representations of 

physiological processes and interactions.[150]. 

 ML& AI: I 

Detect complex patterns within diverse 

datasets, enhancing the accuracy and precision 

of predictions to support personalized 

diagnostics and treatment planning [151]. 

Continuous Updating 

 Feedback Loops: 

Real time patient data is continuously 

incorporated into the model, ensuring that the 

simulations remain upto date and reflective of 

the patient’s evolving health status[152]. 

 Predictive Algorithms:  

These algorithms dynamically generate and 

refine diagnostic and treatment strategies, 

allowing the digital twin to serve as living, 

adaptive model of the patient’s healthcare[153]. 

A digital twin thus provides medical 

professionals with a comprehensive real-time 

view of the patient with minimal invasiveness. 

This approach enables more accurate 

diagnosis, increases the possibility of high-

quality treatment, and empowers patients with 

detailed health record to make informed 

decisions regarding their care [154], [155]. 

 

Conclusion 

AI, encompassing ML and DL, is a powerful 

computational technique that has already 

transformed several areas of research. With the 

recent explosion of genetic, molecular, and 

clinical data, ML provides novel techniques for 

interrogating, analysing, and processing this 

data, as well as extracting significant new 

knowledge about the underlying processes. ML 

techniques are particularly appealing in 

computational biology because of their capacity 

to rapidly produce predictive models in the 

absence of strong assumptions about the 

underlying mechanisms, which is typical of 

some of biomedicine's most serious concerns. 

From genome assembly and variant calling to 

proteomics research, gene expression analysis, 

and drug development, DL techniques have 

demonstrated impressive effectiveness. They 

frequently outperform conventional computer 

techniques in terms of accuracy and scalability. 

However, several challenges still exist. For AI-

driven bioinformatics to be reliable, a variety of 

high-quality, well-annotated datasets must be 

available. Issues such as noise, biases, and 

heterogeneous data can pose challenges to the 

universality and performance of the model. The 

interpretability of DL models remains a 

significant challenge since many state-of-the-art 

architectures function as “black boxes”, limiting 

transparency and confidence in crucial 

biological applications. Furthermore, 

reproducibility and standardization of AI 

procedures are essential to ensure that 

computational results are converted into reliable 

biological insights and therapeutic effects. 

Numerous significant elements will impact 

bioinformatics advancements in the future. 

Integrating multi-omics data, developing 

interpretable and explicable AI models, utilizing 

transfer learning and domain adaptation, and 

putting privacy-preserving techniques like 

federated learning into practice are all crucial for 

the development of computers. Emerging 

technologies like digital twin systems and  

 

quantum computing have the potential to speed 

up research and make preventive, predictive, 

and customized healthcare possible. To achieve 

these goals, interdisciplinary collaboration, 

careful benchmarking, and a commitment to 

ethical and responsible AI deployment are 

required.  
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