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Summary

Paracoccus denitrificans is a metabolically
adaptable prokaryote equipped with diverse
oxidoreductase enzymes that enable
persistence across soil, marine, and industrial
environments. This study reviews key reductase
enzyme families, including flavin, iron, quinone,
and chromate/chromate-related reductases,
emphasizing their biochemical roles and
biotechnological potential. Flavin reductases
catalyze coupled electron transfer, reducing
both NAD(P)H to its active nicotinamide form
and FAD to FADH, . These reactions support
essential pathways such as DNA biosynthesis,
quinone detoxification, and light-associated
microbial functions including bioluminescence.
Iron reductases convert ferric iron (Fe®") into
bioavailable ferrous iron (Fe2*), a process critical
for iron acquisition in nutrient-restricted habitats,
where iron bioavailability dictates microbial
competition and survival. Quinone reductases

further strengthen stress tolerance by
performing  two-electron  reductions that
suppress harmful redox cycling, thereby

preventing excess reactive oxygen species
formation and improving oxidative stress
resistance. Chromate reductases reduce toxic
Cr(VI) to the stable, less soluble Cr(lll) state,

offering promising applications for chromium
detoxification and water bioremediation. The
broad substrate range and structural diversity of
these enzymes highlight the unique capacity of
microbial metabolism to sustain elemental
cycling and chemical transformations distinct
from higher organisms. Understanding these
oxidoreductases advances microbial
biochemistry while guiding innovative strategies
in bioremediation, industrial biocatalysis, and
environmental biotechnology.
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Introduction

Microorganisms can inhabit a wide range of
environments due to their remarkable metabolic
capabilities [1]. Paracoccus denitrificans is a
free-living coccoid bacterium commonly found in
soil and water [2]. It is highly metabolically
versatile and has long served as a model
organism for studying diverse biochemical
pathways [2]. P. denitrificans contains various
enzymes and proteins, including several
belongings to the flavoenzyme superfamily with
NAD(P)H:FMN oxidoreductase activity. Until
recently, FerA and FerB were the only well-
characterized members of this group [3].
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FerA and FerB are flavoenzymes with distinct
physiological roles. FerA functions primarily as
an iron and flavin reductase, enabling the
bacterium to extract iron from extracellular
sources—an essential adaptation for survival in
iron-limited environments [4]. FerB, a quinone
reductase, contributes to the detoxification of
reactive species such as quinones and plays a
protective role against oxidative stress.
Together, these enzymes highlight the diverse
strategies P. denitrificans employs to adapt to
environmental pressures [5-7].

Flavin reductases constitute a major class of
oxidoreductases that use NAD(P)H to reduce
FMN and FAD cofactors [7]. These enzymes are
essential for maintaining intracellular redox
balance and participate in processes such as
hydroxylation reactions, detoxification, and DNA
synthesis [8]. They are classified into two types
based on their flavin-binding properties, and
their ability to act on substrates with varied
structures reflects their versatilty and
significance in microbial metabolism [9].

Iron reductases are key enzymes involved in
microbial iron metabolism, reducing ferric iron
(Fe3") to its more bioavailable ferrous form
(Fez*) [10]. This reduction is crucial in
siderophore-mediated iron uptake, particularly
under iron-limiting conditions. These enzymes
also contribute to metal detoxification and redox
homeostasis. FRE1 and FRE2 in
Saccharomyces cerevisiae perform similar
functions, demonstrating the evolutionary
conservation of iron reductase activity across
species. P. denitrificans and other relatives also
possess quinone and chromate reductases that
contribute to the environmental detoxification
and xenobiotic degradation. While quinone
reductases are related to protecting cells from
oxidative damage by minimizing redox cycling of
guinones, chromate reductase is involved in the
process of converting toxic Cr(VI) to its nontoxic
form Cr(lll). These enzymes are structurally
related to and may have the same substrate
specificity as flavin reductases. The metabolic
versatility of Paracoccus denitrificans is driven
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by oxidoreductase enzymes that mediate
essential redox transformations, such as:

(1) NAD(P)H + FAD — NAD(P)+ + FADH,

(2) Fe3* + e~ — Fe?*

(3) Quinone + 2H* + 2e~ — Hydroquinone.
Such reactions demonstrate the organism’s
ability to maintain redox balance, acquire
important nutrients, and detoxify harmful
compounds.

Flavin Reductases

Flavin reductases are oxidoreductase enzymes
(EC 1.5.1.x) that helps in catalysing the
reduction of flavin cofactors, specifically flavin
mononucleotide (FMN) or flavin adenine
dinucleotide (FAD), to their reduced forms
FMNH, or FADH, [15]. The reducing
equivalents come from either NADH or NADPH,
which are nicotinamide cofactors [16].

Flavin (oxidized) + NAD(P)H + H* — Flavin
(reduced) + NAD(P)* [16]

The products, FMNH, or FADH,, act as
electron donors for various downstream
biochemical processes, they play key roles in
maintaining cellular redox balance and in
allowing oxidative biochemical changes
[17][18].

Class | Flavin Reductases

The active site of these enzymes contains flavin
cofactors that are tightly bound, sometimes
covalently bound [19]. They usually act
according to a ping-pong (double displacement)
mechanism, in which the flavin cofactor is
reduced after accepting electrons from
NAD(P)H [19][23]. Electrons are then
transferred to an external electron acceptor by
the reduced flavin. In a case study of
Escherichia coli’'s Fre (flavin reductase), which
catalyses the reduction of substrates and has a
tightly bound FMN [20]. In Class | enzymes, the
tight binding of flavin allows for rapid cycling
between oxidized and reduced forms, enabling
high turnover rates [21].
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Class Il Flavin Reductases

These enzymes do not have bound flavin in their
active site. Rather, they reduce free flavin
molecules (FMN or FAD) present in the medium

[22]. They work by sequential Kkinetic
mechanism in which a ternary complex
(enzyme—NAD(P)H—flavin) develops rapidly

during catalysis. Vibrio fischeri’'s NADPH-flavin
reductase converts free FMN to FMNH, for the
bacterial luciferase reaction [22]. Class Il flavin
reductases are necessary in pathways where
reduced flavin is required as a diffusible
intermediate for other enzymes [23]. They are
small to medium-sized proteins (~20-35 kDa),
some multi-domain enzymes are larger.[24].
Many flavin reductases share a Rossmann fold
for binding NAD(P)H [25]. Some of them prefer
NADPH, while others accept both NADH and
NADPH [26]. Many flavin reductases can be
identified by their substrate promiscuity, which
allows them to reduce several electron
acceptors apart from flavins, including [12]:
Quinones: Flavin reductases convert quinones
to hydroquinone, reducing oxidative stress by
inhibiting redox cycling and ROS production
[27]. Nitroaromatic compounds: Fre in E. coli
can reduce nitroaromatic contaminants such as
nitrobenzene, contributing to detoxification
processes [10] (table 1). Azo dyes: Flavin
reductases reduce azo bonds (-N=N-) to
decolorize dye, which is relevant in
bioremediation [11]. Chromate (Cr(VI)):
Bacterial flavin reductases can reduce chromate
Cr(Vl) to less harmful Cr(lll), potentially
contributing to environmental maintenance [9].
(Physiological functions of Flavin reductase is
illustrated in Figure 1).

Physiological Functions Iron Reductases

Flavin reductase activity is involved in several
important cellular processes: DNA synthesis —
Provides reduced flavins essential for
ribonucleotide reductase, enabling
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deoxyribonucleotide production crucial for DNA
replication [28]. Monooxygenase reactions —
Supplies FMNH, for monooxygenases,
facilitating the oxygenation of aromatic and
xenobiotic compounds [29]. Bioluminescence in
marine bacteria — Generates FMNH, for
bacterial luciferase, supporting light production
for communication and survival [30]. Iron
acquisition and metabolism — Reduces Fe3" in
siderophore complexes, enhancing iron uptake
under limiting conditions [31], (The mechanism
is illustrated in Figure 1).

Iron Reductases

Iron reductases are a class of oxidoreductase
enzymes that catalyze the conversion of ferric
iron (Fe®") to its bioavailable ferrous form (Fez*)
[36]. This reduction represents a critical step for
microorganisms, plants, and some animal
systems to acquire and utilize iron efficiently
under iron-limited conditions [36].

Fe3+ + e- — Fe2+ [36]

Fe3* is poorly soluble and can’t be used by cell
under normal conditions, hence it needs to be
converted to Fe?" is necessary for adsorption
and intracellular utilization [37][38]. Integral
membrane proteins play important role in
transmembrane electron transfer. Example:
FRE family in Saccharomyces cerevisiae [39].
Soluble (cytoplasmic or extracellular) iron
reductases are located in the cytosol, periplasm,
or released into the extracellular medium [36].
Help in reduction of Fe3* outside the plasma
membrane. Many iron reductases use flavin
cofactors such as FMN or FAD as electron
carriers [40]. In these enzymes, flavins mediate
electron transfer from NAD(P)H or reduced
cytochromes to Fe3*, promoting its reduction
[41][42]. Molecular weight is ~20-40 kDa to
>100 kDa for soluble enzymes for membrane-
bound complexes [42][43]. Active site
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Figure 1. Physiological functions of Flavin reductase.
Flavin reductases generate reduced flavins (FMNH, /FADH, ) that support multiple cellular
processes. These include activation of ribonucleotide reductase for DNA synthesis, provision of
FMNH, to monooxygenases for substrate oxygenation, fueling luciferase-driven bioluminescence,
and reduction of Fe3* in siderophore complexes to facilitate iron uptake. (Source: Authors’ own work)

Enzyme

Fre

Organism

E. coli

Cofactor

FMN-bound

Function

Reduction of quinones, nitroaromatics
[32][33]

LuxG (flavin reductase) | V. fischeri FMN (free) | Generates FMNH, for bioluminescence
(34]
ChrR Pseudomonas putida | FMN-bound | Cr(VI) reduction [35]
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NfsA/B E. coli

Table 1: Representative examples of Flavin reductase

contains redox cofactors such as flavins, iron-
sulfur clusters, or heme groups [41][44]. Many
exhibits high affinity for Fe3*, crucial under iron-
limited conditions [44][45].

Mechanism of Action

Cells require Fe2* for uptake. They obtain it by
reducing extracellular Fe3* through three main
pathways: Transmembrane Electron Transport:
Electrons from cytosolic donors like NADPH are
transferred across the membrane, reducing Fe3*
outside the cell [40]. Direct Reduction in
Solution: Soluble reductases bind Fe3* (or Fe3*
chelators) and convert it to Fe2* [40]. Reduction
of Ferric Siderophore Complexes: Iron
reductases reduce Fe?* bound in siderophores,
releasing Fe?* for uptake. All pathways ensure
Fe2* is available for cellular needs [50]. (The
mechanism of Flavin reductase is illustrated in
Figure 2)

Quinone Reductases

Quinone reductases are a subgroup of
oxidoreductase enzymes that catalyse the
reduction of quinones to hydroquinone [53][54].
This reaction is biologically crucial because it
prevents quinones from engaging in redox
cycling, a process that generates reactive
oxygen species (ROS) and contributes to
oxidative stress and cellular damage [55]. The
general reaction catalysed by quinone
reductases can be represented as:

Quinone + 2e- + 2H+ — Hydroquinone [54]

These enzymes are often NADH- or NADPH-
dependent and frequently contain flavin
cofactors, particularly FMN or FAD, which
mediate electron transfer during catalysis [56].
Quinone reductases are widely distributed
across bacteria, fungi, plants, and animals,
underscoring their conserved and essential
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FMN-bound | Nitroaromatic reduction [32]

protective roles in diverse biological systems
[56].

Structural and Biochemical Features

Quinone reductases tend to be relatively small,
with molecular weights of around 20-40 kDa
[57]. Most multimeric complexes, such as
dimers or tetramers, are formed from these
proteins [57]. These enzymes often carry out
two-electron reductions. This strategy not only
avoids producing semiquinone radicals but also
minimizes the generation of reactive oxygen
species ('ROS") fcc and so helps to protect cells
[58]. This two-electron reduction stands in stark
contrast with one-electron pathways. The latter
could easily produce short-lived intermediate
radical semi-quinone prone to undergo harmful
redox cycling processes [58].

Physiological Roles of Quinone Reductases

Roles of Quinone Reductase Activity in Cellular
Protection and Therapy

Quinone reductase activity contributes to
detoxification and protection through xenobiotic
metabolism, antioxidant defense, redox
balance, and reactive oxygen species (ROS)
detoxification [58][59]. These functions support
cellular protection and have therapeutic
relevance, particularly in cancer therapy [60].
(Physiological functions of Quinone reductase is
illustrated in Figure 3).

Chromate Reductases Discussion

Chromate [Cr(VI)] is a toxic and mutagenic
environmental contaminant [65]. Chromate
reductases play a crucial role in reducing Cr(VI)
to Cr(lll), a much less toxic and insoluble form,
using NAD(P)H as an electron donor [66]. These
enzymes are also attracting interest for their
potential application in bioremediation [67].
Many have the same structure as flavin
reductases, and the same dependency on
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Figure 2. Mechanism of Action of Iron Reductase.

The figure illustrates three mechanistic routes for converting Fe3* to Fe2": transmembrane electron transfer
from cytosolic donors to extracellular Fe3*, direct reduction of soluble Fe3* or Fe3*—chelator complexes, and
reduction of ferric siderophore complexes. All pathways converge on generating Fe2* in a form accessible for

cellular uptake. (Source: Authors’ own work)

Enzyme Organism Location Function

FRE1 S. cerevisiae Plasma membrane Reduces extracellular Fe3* for uptake
[51].

FRE2 S. cerevisiae Plasma membrane Similar function as FRE1, with broader
substrate range [51].

Ferric E. coli Periplasmic/cytoplasmic | Reduction of ferric-siderophore

reductase complexes [49].

FRO2 Arabidopsis Root epidermis Reduces soil Fe3* for uptake under iron

thaliana deficiency [52].

Table 2: Representative examples of Iron reductase

alleviates its toxic effects and precludes damage
to DNA by stopping ROS formation [71]. The
homology between these enzymes and FerC
paralogs indicates that FerC might also have
chromate reductase-like activity [72].

cofactors [68]. Some of the best-characterized
chromate reductases are: ChrR from
Pseudomonas putida [69], NAD(P)H:quinone
reductase (NQR) from Arabidopsis thaliana,
which exhibits action against chromium [70].
These enzymes usually act on a broad spectrum
of non-polar substrates. Cr(VI) reduction
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Physiological Roles of Chromate
Reductases

Roles of Chromate Reductase Activity in
Cellular and  Environmental  Protection
Chromate reductase activity aids in reducing
toxic chromium species, maintaining redox

balance, and detoxifying contaminated
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reductases, protects cells from oxidative and
genotoxic stress, and reduces other toxic
compounds like quinones and azo dyes,
contributing to overall cellular  and
environmental protection [74]. (Physiological
functions of Chromate reductase is illustrated in
Figure 4)

environments [73]. It overlaps with flavin

Quinone
Reductase

Activity

Y v

— —
[

THERAPEUTIC RELEVANCE

DETOXIFICATION AND PROTECTION

Redox Balance

Metabolism Defense Detoxification Cancer Therapy

Xenobiotic | ‘ Antioxidant |

ROS |

\ ™
VL J
[
Cellular
Protection and

Therapeutic
Applications

Figure 3. Physiological Roles of Quinone Reductase.

The figure summarizes the roles of quinone reductase activity in detoxification and cellular protection through xenobiotic
metabolism, antioxidant defense, redox balance, and reactive oxygen species (ROS) detoxification. These processes
collectively contribute to cellular protection and underpin therapeutic relevance, including applications in cancer therapy.
(Source: Authors’ own work)

Enzyme Organism Cofactor Function

NQO1 Humans FAD Detoxifies quinones, antioxidant defense [61].
ChrR E. coli FMN Quinone and chromate reduction [62].

YhdA B. subtilis FMN Reduction of quinones, azo dyes [63].

FerB P. denitrificans FMN Quinone and iron reduction [64].

Table 3: Representative examples of Quinone reductase
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Figure 4. Physiological Roles of Chromate Reductase. (Source: Authors’ own work)

Enzyme Organism Cofactor Substrates Reduced
ChrR P. putida FMN Cr(VI), quinones, azo dyes [69].
ChrR E. coli FMN Cr(VI), quinones, azo dyes [70]
NQR A. thaliana FAD Cr(VI), quinones [76]

Table 4: Representative examples of Chromate reductase

Discussion

The enzyme system of water nitrate and similar
microorganisms, specifically Paracoccus
denitrificans, is reported to be versatile in its
metabolism [1, 2, 3]. NAD(P)H can
hydroxymethylamine, while a flavoenzyme
(such as ferA or ferB) stimulates the reaction by
accepting two electrons and one proton
[15,16,17,18]. The reduced forms of flavins such
as FMNH, or FADH, are important electron
donors for post reduction processes. They are

used to entangled injury, DNA is synthesized
through ribonucleotide reductase,
monooxygenase oxygenates alien compounds
onto the planet [29,30]; while light
transformation occurs in living bioluminescent
marine bacteria like Vibrio fischer [20].

Iron reductases also illustrate a general strategy
of adaptation among micro-organisms. Under
iron-limiting conditions, by reducing ferric iron
(Fe® to ferrous iron (Fe2), they are able
efficiently obtain this side product [10,36,39,40].
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That such iron reductive systems are used by
guite different types of living beings (such as the
FRE family in Saccharomyces cerevisiae) is
proof that they are basic to life. Reducing ferric
ion to ferrous is something without which it
would no longer be subsistable [39,51].
PdN1FerB is a typical example of the quinone
reductase. When an organism's environment is
full of metal ions, this enzyme plays an important
role in quenching ROS and makes them
harmless and transportable by reducing
guinones to  hydroquinones  [55,58,64].
Enzymes such as ChrR in P. putida also display
enzymatic and structural similarities with
reductase, so evolutionarily there are similarities
between these two types. The enzymes of this
group possess a wide substrate promiscuity and
ecological significance, having the capability to
reduce such varied substances as quinones,
azo dyes, and Cr(VI) [68,69,70,72].

Conclusion

This work highlights the biochemical diversity
and significance of oxidoreductase enzymes in
Paracoccus denitrificans and other bacteria.
Flavin, iron, quinone, and chromate reductases
collectively contribute to cellular redox balance,
detoxification,  nutrient  acquisition, and
ecological adaptation. Their ability to catalyze
electron transfer reactions across a wide range
of substrates demonstrates remarkable
metabolic  flexibilty = and  environmental
importance. Beyond their physiological roles,
these enzymes hold considerable promise for
biotechnological applications such as the
degradation of hazardous pollutants and the
synthesis of valuable biochemicals. Their
substrate versatility and catalytic efficiency
make them strong candidates for future
structural and mechanistic studies, which will
deepen our understanding of microbial
metabolism and support the development of
innovative approaches in environmental and
industrial biotechnology.
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